
Source of Acquisition
NASA Goddard Space Flight Center

Completing and Adapting Models
of Biological Processes

Tiziana Margarial, Michael G. Hinchey’, Harald Raffelt3, James L. Rash’,
Christopher A. R0ufT4, Bernhard Steffen3

’Chair of Service and Software Engineering, Universitat Potsdam (Germany)
margariaOcs.uni-potsdam.de

2NASA Goddard Space Flight Center, Information Systems Division, Greenbelt, MD, USA
michael . g . hinchey , j ames . 1 . rash@nasa.gov

3Chair of Programming Systems, Universitat Dortmund (Germany)
harald.raffelt,steffenOcs.uni-dortmund.de

4SAIC, Advanced Concepts Business Unit, McLean, VA 22102
rouf f cOsaic . com

Abstract
We present a learning-based method for model completion and adaptation, which is based on the combination
of two approaches: 1) R2D2C, a technique for mechanically transforming system requirements via provably
equivalent models to running code, and 2) automata learning-based model extrapolation. The intended
impact of this new combination is to make model completion and adaptation accessible to experts of the
field, like biologists or engineers. The principle is briefly illustrated by generating models of biological
procedures concerning gene activities in the production of proteins, although the main application is going
to concern autonomic systems for space exploration.

1 Motivation

A formal approach to Requirements-Based Programming, provisionally named R2D2C (“Requirements to
Design to Code”), was developed at NASA [14] as a general-purpose method to mechanically transform
system requirements into a provably equivalent model. This is a central need for ultra-high dependability
systems like those developed at NASA for space exploration. The R2D2C approach provides mathematically
tractable round-trip engineering for system development, rigorously based on formal modelling and formal
reasoning techniques. In this paper we complement this method with a learning-based method for model
completion and adaptation in order to make model completion and adaptation accessible to experts of the
field, like biologists or engineers.

Before discussing the technical background and the biological application, we briefly sketch the standard
areas of application.

Application Areas

The work described below is motivated by the need for requirements-based programming for ultra-high
dependability systems which are remote, embedded, and increasingly autonomic.

Sensor Networks An example of a sensor network for solar system exploration is the Autonomous Nan0
Technology Swarm mission (ANTS) 181, which is at the concept development phase. This mission will send
1,000 pico-class (approximately 1 kg) spacecraft to explore the asteroid belt. The ANTS spacecraft will act
as a sensor network making observations of asteroids and analyzing their composition. Embedded sensors
in space applications are a challenge along several research dimensions: large signal propagation delays
in communications with Earth; unavailable or blocked communications paths between the spacecraft and

Figure 1: The enhanced R2D2C Approach with Requirement Completion

mission control on Earth for variable (perhaps long) intervals of time; and operations under extremes of
dynamic environmental conditions.

Due to the complexity of these systems as well as their distributed and parallel nature, they will have an
extremely large state space and will be impossible to test completely using traditional testing techniques.
R2D2C helps by converting the scenarios into a formal model that can be analyzed for concurrency-related
errors, consistency and completeness, as well as domain-specific errors.

Robotic Operations We have been experimenting with generating code to control robots, but more inter-
esting is the use of this approach to investigate the validity and correctness of procedures for complex robotic
assembly or repair tasks in space, which rely heavily on the support of embedded controllers. Exploratory
work here concerns providing an additional means to validate procedures from the Hubble Robotic Servicing
Mission (HRSM) - for example, the procedures for replacement of cameras on the Hubble Space Telescope
(HST) .

Communication Systems The learning based approaches have fared quite promisingly for the test-based
discovery of models of legacy communication systems, thus outperforming prior approaches based on trace
combination [ll]. As shown in [16, 211, the test-based model generation by classical automata learning is
very expensive. It requires an impractically large number of queries to the system, each of which must be
implemented as a system-level test case. Key towards the tractability of observation based model generation
are powerful optimizations exploiting different kinds of expert knowledge in order to drastically reduce
the number of required queries, and thus the testing effort. %cent studies have brought to a thorough
experimental analysis of the second-order effects between such optimizations in order to maximize their
combined impact [21], and to the development of a mature toolset for experimentation [26], which is used
here. As shown in [2], our learning method is coherent with the usual notions of conformance testing.

In the specific R2D2C context, we are interested in investigating the possible application of the combined
approach to the specification of communication mechanisms described in the previous application domains.
This can be completed by a test-based or monitoring-based validation once those systems are operational.

In the following, we sketch the principles on which the R2D2C approach works and the effects of the
learning-enhanced method.

2 How R2D2C Works

The R2D2C approach involves a number of phases, which are reflected in the system architecture described
in Figure 1 and described below.

D1 Scenarios Capture: Engineers, end users, and others write scenarios describing intended system opera-
tion. The input scenarios may be represented in a constrained natural language using a syntax-directed
editor, or may be represented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from the scenarios defined in D1.

D3 Model Inference: A formal model, or formal specification, expressed in CSP is inferred by an automatic
theorem prover - in this case, ACL2 [17] - using the traces derived in phase 2. A deep1 embedding of
the laws of concurrency [13] in the theorem prover gives it sufficient knowledge of concurrency and of
CSP to perform the inference. The embedding will be the topic of a future paper.

D4 Analysis: Based on the formal model, various analyses can be performed, using currently available
commercial or public domain tools, and specialized tools that are planned for development. Because
of the nature of CSP, the model may be analyzed at different levels of abstraction using a variety of
possible implementation environments. This will be the subject of a future paper.

D5 Code Generation: The techniques of automatic code generation from a suitable model are reasonably
well understood. The present modeling approach is suitable for the application of existing code gener-
ation techniques, whether using a tool specifically developed for the purpose, or existing tools such as
FDR [lo], or converting to other notations suitable for code generation (e.g., converting CSP to B [4]
and then using the code generating capabilities of the B Toolkit).

According to this full cycle, developing a system that will have a high level of reliability requires the
developer to represent the system as a formal model that can be proven to be correct. Through the use of
currently available tools, the model can then be automatically transformed into code with minimal or no
human intervention to reduce the chance of inadvertent insertion of errors by developers. Automatically
producing the formal model from customer requirements would further reduce the chance of human error
insertion.

In this paper we focus on a specific, new aspect of the R2D2C approach, the completion of the re-
quirements given as a set of traces as generated by D2. This needs a short introduction into automata
learning.

3 Automata Learning

Machine learning deals in general with the problem how to automatically generate a system’s description.
Besides the synthesis of static soft- and hardware properties, in particular invariants [9], [24], [3], the field
of automata learning is of particular interest for soft- and hardware engineering [7], [23], [32], [25], [6].

Automata learning tries to construct a deterministic finite automaton (see below) that matches the
behavior of a given target automaton on the basis of observations of the target automaton and perhaps
some further information on its internal structure. [ll, 31, 221 explain our view on the use of learning. Here
we only summarize the basic aspects of our realization, which is based on Angluin’s learning algorithm L*
from [I].

L*, also referred to as an active learning algorithm, learns a finite automaton by actively posing mem-
bership queries and equivalence queries to that automaton in order to extract behavioral information, and
refining successively an own hypothesis automaton based on the answers. A membership query tests whether
a string (a potential run) is contained in the target automaton’s language (its set of runs), and an equivalence

“‘Deep” in the sense that the embedding is semantic rather than merely syntactic.

query compares the hypothesis automaton with the target automaton for language equivalence, in order to
determine whether the learning procedure was (already) successfully completed and the experimentation can
be terminated.

3.1

Specifications in terms of individual traces are by their nature very partial and represent only the most
prominent situations. This partiality is one of the major problems in requirement engineering. It often
causes errors in the system design that are difficult to fix. Thus techniques for systematically completing
and later on adapting such partial requirement specifications in cooperation with the application expert are
of major practical importance.

We therefore propose a method for requirements completion and adaptation, which is based on automatic
(active) automata learning. In essence, the method works by

0 initializing the learning algorithm with the set of traces constituting the requirement specification and

Learning-Based Model Completion and Adaptation

with the model needing adaptation (this model may well be empty), and

constructing a consistent behavioral model by establishing predefined consistency and well-foundedness
conditions. The details of how to do this have been explained in [31] its practical handling in [16, 211,
and a library-based toolset for experimentation in [26].

In this fashion, we arrive at a finite state behavioral model, which is an extrapolation of the given requirement
specification: it comprises all ’positive’ traces of the specification, and rejects all forbidden traces. All the
other potential traces are consider as ’don’t cares’, in order to construct a corresponding state minimal
hypothesis automaton. In particular, although the learning procedure by its nature will only investigate
finitely many traces, the constructed hypothesis automaton will typically accept infinitely many traces, as
the extrapolation process introduces loops.

In order for this method to work, a number of membership queries need to be answered. Both, establishing
closure of the model, as well as establishing the consistency of the abstraction of reaching words into states
(i.e., of the characterization from above introduced in the previous section) can only be effected on the basis
of additional information about the intended/unknown system.

3.2 Requirement Completion in R2D2C

Fig. 1 shows the R2D2C scenario including the new requirement completion components. As indicated by
the arrows representing the potential flow of R2D2C processes, our new components introduce the following
new options, which complement the original R2D2C process here indicated by the arrow bypassing the
requirements completion module L2:

0 Most powerful is the integrated mode of use, where the requirement completion component L2 is
added to the original process. Its role is here simply to support the evaluation of the given set of
requirement traces, and to hint at underspecified portions which may be successively completed. This
option strengthens the original R2D2C process.

0 Alternatively, one may replace the model inference component D3 by our requirements completion
component L2, meaning that the subsequent component D4 and D5 directly work on the model pro-
duced by L2. Currently, this means that we restrict ourselves to sequential models. However, we are
investigating how to overcome this restriction in the future.

The next section presents a non-standard application of our technology to the description of biological
processes.

4 Application: Generating and Verifying Complex Biological Scripts and Pro-
cedures

Finding patterns in biological sequences has the goal of identifying parts that have a biological meaning
[18, 19, 201. There are several approaches to this problem. Bioperl [29] provides a collection of perl modules
used for the development of perl scripts for use in Bioinformatics applications.

The Bioperl [12, 301 Project is an international association of developers of open source Perl tools for
bioinformatics, genomics and life science research, with strongly increasing relevance over the almost 10
years. Bioperl relies on a large number of scripts to access, steer, and orchestrate a growing number of
bioinformatic tools and databases. These scripts are becoming increasingly complex and intertwined, so
that their correctness has become a legitimate concern of the community.

The application of software validation techniques to Bioperl is attempting to provide an ongoing, system-
atic testing of the Bioperl basis, with patches and validated new code being added to the public codebase.
The goal is to establish user confidence that software components will work as described. R2D2C is a
comprehensive software validation method that has been already successfully applied to problems in this
domain.

We consider here again the application example already handled with R2D2C in [27] and solve the model
creation problem with the combined methodology, using the requirement completion in replace mode.

4.1 From Scenarios to CSP

Let us consider again the same example from 151 (pp. 146-147). The problem is described in the form of a
scenario:

0 Gene Geneone produces protein Proteinone in t l units of time; Proteinone dissipates in time u l and
triggers condition cone.

0 Gene GeneTwo produces protein ProteinTwo in t2 units of time; ProteinTwo dissipates in time u2 and
triggers condition ctwo.

0 Once produced, ProteinTwo positions itself in GeneOne for u2 units of time preventing Proteinone
from being produced.

The scenario represents a process that is expressed and implemented in Bioperl using a Perl script.
However, it is also possible to express this scenario using a formal model based on CSP [15]. GeneOne,
Proteinone, GeneTwo, ProteinTwo can be considered as separate processes with timing constraints implicitly
included. (Timing constraints may be explicitly handled by using Timed CSP, a variant of CSP which extends
the semantics of CSP with time [28].) The implicit pre-condition that GeneOne must be enabled is handled
by the Start process. The events and conditions describing protein production are represented as messages
gone, cone, gtwo, ctwo, and enabled. The resulting R2D2C input scenario is (Dl):

S t a r t sends enabled.
GeneOne receives enabled then sends gone.
Proteinone receives gone then sends cone.
GeneTwo sends gtwo.
ProteinTwo receives gtwo then sends ctwo.
GeneOne receives ctwo then sends enabled.

and the corresponding system description in CSP (after Phase D2):

channel cone, ctwo, enabled, gone, gtwo : T ;
S t a r t = enabled ! 0 -> S t a r t ;
GeneOne = enabled ? x -> gone ! 0 -> GeneOne ;
Proteinone = gone ? x -> cone ! 0 -> Proteinone ;
GeneTwo = gtwo ! 0 -> GeneTwo ;
ProteinTwo = gtwo ? x -> ctwo ! 0 -> ProteinTwo ;
GeneOne = ctwo ? x -> enabled ! 0 -> GeneOne ;
System =

GeneOne [I CI I3 I1
GeneTwo [I CI I3 I1
Proteinone [I € 1 I3 I1
ProteinTwo [I (I I) 11
start ;

10

10 IO IO

IO

ProteinTwo Proteinone Geneone GeneTwo

Figure 2: Learned models of the single actors

4.2

Instead of analyzing the CSP model, as in [27], we have here used our learning technique to fully automatically
produce automata models for each system component (see Fig. 2), as well as for the model of the whole
system (Fig. 3).

Learning and Adapting the Models

Figure 3: Learned model of the biological system

Figure 4: Stepwise learned model of the incorrect biological system

These graphs show in a very intuitive way the global behaviour of the system. It is thus very direct also
for someone unfamiliar with CSP and its tools to validate the behaviour by inspection.

A frequent mistake in implementing these requirements is in fact the omission of constraints, either due
to their implicit presence in the requirements, or due to errors in code development. For example, omitting
Start sends enabled (which makes explicit an implicit precedence) nothing prevents GeneOne from constantly
generating Proteinone and ignoring ProteinTwo inhibition. The corresponding erroneous system of [27] has
also been learnt with our method, resulting in the global behaviour of Fig. 4(4).

This inspection could then be used to revise the requirements before developing the Bioperl code, even
before carrying out a formal analysis at D4.

4.3 Successive Refinement

The erroneous system could be learned in only four iterations. Fig. 4 illustrates the concrete learning process
starting from the initial hypothesis along the application of the algorithm.

To learn this model from scratch we initialize the learning algorithm with no information about the
system except for the alphabet of symbols. No initial trace is provided, no hints on possible symmetries or
independent actions.

1. After processing the queries of length 0 and 1 with these outcomes

0 acc
gone acc
gtwo acc
ctwo nonacc
cone nonacc

the learning algorithm generates the hypothesis model depicted in Figure 4(1): there is at least one
state, which accepts gone and gtwo and rejects cone and ctwo. In the picture we show only the
accepting traces: the automata are incomplete in the sense that all the absent symbols lead to a single
nonaccepting state.

2. By model checking an expert-given corresponding property we find out that gone.gone is not an ac-
cepting sequence, thus the model (1) is not yet accurate and must be refined. We refine it starting
from this counterexample, and reach a new hypothesis shown in Fig. 4(2). Here, the counterexample
sequence leads to the discovery of a second state, state 1, and we have distinguished further behaviours.

3. Due to expert knowledge, we find out that gtwo.gtwo is another trace that must be rejected. This leads
to the further refinement of state 1 and by completion we reach a new hypothesis as in Fig. 4(3).

4. After also rejecting gone.gtwo.ctwo.gone in a similar fashion, we arrive at the automaton shown in
Fig. 4(4), which satisfies all our expectations.

In order for this method to scale, and to limit the required expert-interaction, we provide a number of
optimizations that exploit other sources of expert knowledge, like prefix closure of the language, symmetry
between certain components (genes always behave like genes), and the independence of certain observations.

5 Conclusions and Perspectives

We have presented a learning-baed method for model completion and adaptation, which is based on the
combination of two approaches: 1) R2D2C, a technique for mechanically transforming system requirements
via provably equivalent models to running code, and 2) automata learning-based model extrapolation. The
intended impact of this new combination is to make model completion and adaptation accessible to experts
of the field, like biologists or engineers.

Currently, we are investigating the power of our method. Until now, we used it for an initial model
completion, as a support for the creation of the first model. We are currently carrying out case studies that
concern model evolution and change, in this case continuously updating the model of biological processes
according to new information.

We are also building and adapting models of servicing procedures for spacecrafts, and adaptive control
procedures for remote autonomic systems. These are the application areas that in our opinion are going to
profit enormously of the combined completion-adaptation technique.

References
[l] D. Angluin. Learning regular sets from queries and counterexamples. Znformatzon and Computation, 2(75):87-

106, 1987.
[2] T. Berg, 0. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, B. Steffen: On the Correspondence Between Confor-

mance Testing and Regular Inference, Proc. FASE 2005, 8th Int. Conf. on Fundamental Approaches to Software
Engineering, Edinburgh, UK, April 2005, LNCS N.3442, pp. 175-189, Springer Verlag, 2005.

[3] Y . Brun, M. D. Ernst. Finding latent code errors via machine learning over program executions Proc. 26th Znt.
Con$ on Software Engzneering (ICSE’04), pp. 480-490, May 2004

[4] M. J. Butler. csp2B : A Practzcal Approach To Combining CSP and B. Declarative Systems and Software
Engineering Group, Department of Electronics and Computer Science, University of Southampton, Feb. 1999.

[5] J. Cohen. Bioinformaticsan introduction for computer scientists. ACM Comput. Surv., 36(2):122158, 2004.
[SI J. E. Cook, Z. Du, C. Liu, A. L. Wolf. Discovering Models of Behavior for Concurrent Systems Tech. rep. New

Mexico State University, Dept. of Computer Science, Aug. 2002
[7] J. E. Cook, A. L. Wolf Discovering Models of Software Processes from Event-Based Data ACM Trans. on

Software Engineering and Methodology (TOSEM) pp. 215-249, 1998
[8] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. L. Rilee, and M. K. Bhat. ANTS (Autonomous Nano-Technology

Swarm): An artificial intelligence approach to Asteroid Belt resource exploration. In Proc. Znt ’1 Astronautzcal
Federation, 51st Congress, October 2000.

[9] M. D. Ernst, A. Czeisler, W. G. Griswold, D. Notkin. Quickly detecting relevant program invariants In pro-
ceedings of the 22nd Znternatzonal Conference on Software Engineenng (ICSE 2000), 449-458, June 2000.

[lo] Fazlures-Divergences Refinement: User Manual and Tutorial. Formal Systems (Europe), Ltd., 1999.
[ll] A. Hagerer, H. Hungar, 0. Niese, and B. Steffen. Model Generation by Moderated Regular Extrapolation. Proc.

of the 5th Znt. Conf. on FzLndamental Approaches to Software Engzneering (FASE 2002), LNCS 2306, pp. 80-95.
[12] P. van Heusdan. Applying software validation techniques to Bioperl. In 2004 Bioinformatics Open Source Con-

ference, Glasgow, UK, 2930 July 2004. Abstract.
[13] M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in CSP. International Series in

Software Engineering. McGraw-Hill International, London, UK, 1995.

[14] Michael G. Hinchey, James L. Rash, Christopher A. ROL& A Formal Approach to Requirements-Based Pro-
gramming, Proc. ECBS 2005, 12th IEEE Int. Conf. on the Engineering of Computer-Based Systems, Greenbelt

[15] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in Computer Science.

[16] H. Hungar, T. Margaria, B. Steffen: Test-Based Model Generation for Legacy Systems, IEEE International Test

[17] M. Kaufmann and Panagiotis Manolios and J Strother Moore. Computer-Aided Reasoning: An Approach.

[18] D. E. Krane and M. L. Raymer. Fundamental Concepts of Bioinformatics. Benjamin Cummings, San Francisco,

[19] S. A. Krawetz and D. D. Womble. Introduction to Bioinformatics: Theoretical and Practical Approach. Humana

[20] A. M. Lesk. Introduction to Bioinformatics. Oxford University Press, Oxford, UK, 2002.
[21] T. Margaria, H. RaEelt, B. Steffen: Analyzzng Second-Order Effects Between Optimizatzons for System-Level

Test-Based Model Generation, Proc. IEEE International Test Conference (ITC), Austin, TX (USA), November
8 - 10, 2005, IEEE Computer Society Press.

[22] T. Margaria, 0. Niese, H. Raffelt, and B. Steffen Efficient Test-based Model Generationfor Legacy Reactive
Systems. To appear in Proceedings of International High Level Design Validation and Test Workshop, 2004
Sonoma, California.

[23] L. Mariani, Mauro Pezzi?. A technique for verifying component-based software Proceeding of the Int. Workshop
on Test and Analyszs of Component Based Systems, TACOS 2004, Barcelona, March 2004

[24] J. W. Nimmer, M. D. E r s t . Automatic generation of program specifications In Proceedings of the 2002
Internatzonal Symposium on Software Testzng and Analysis (ISSTA 2002), 232-242, July 2002

[25] D. Peled, M. Y. Vardi, M. Yannakakis Black Box Checking Formal Methods for Protocol Engineering and
Distributed Systems, (FORTE/PSTV), pp. 225-240, 1999, Kluwer.

[26] H. Raffelt, B. Steffen, T. Berg: LearnLzb: A Lzbrary for Automata Learnang and Experimentation, Proc. FMICS
2005, 10th ACM Workshop on Formal Methods for Industrial Critical Systems, Lisbon, Sept. 2005.

[27] J. Rash, M. Hinchey, D. Gracanin, 6. Rouff A n Approach to Generatzng and Venfying Complex Scnpts and
Procedures, 4th IEEECS Computational Systems Bioinformatics, CSB Workshops, Stanford, Aug. 2005, pp.

[28] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. Reed, and A. W. Roscoe. Timed CSP: Theory and practice.
In Proc. REX, Real-Time: Theory in Practice Workshop, volume 600 of LNCS, pages 640-675. Springer-Verlag,
3-7 June 1991.

(MD), 2005, IEEE, pp. 339-345.

Prentice Hall International, Englewood Cliffs, NJ, 1985.

Conference (ITC), Charlotte, NC, September 30 - October 2, 2003.

Advances in Formal Methods Series. Kluwer Academic Publishers, Boston, 2000.

2003.

Press, Totowa, New Jersey, 2003.

305-313.

[29] J. Stajich and E. Birney. The Bioperl project: motivation and usage. SIGBIO Newsl., 20(2):1314, 2000.
[30] Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen G, Gilbert JG, Korf I, Lapp

H, Lehvaslaiho H, Matsalla C, Mungall CJ, Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka
E, Wilkinson MD, and Birney E The Bzoperl toolkzt: Per1 modules for the lzfe sciences. Genome Res 2002 Od;
12(10) 1611-8. PubMed HubMed [bioper12002]

[31] B. Steffen and H. Hungar, Behavior-based model construction. In S. Mukhopadhyay and L. Zuck, editors, Proc.
4th Int. Conf. on Verificatzon, Model Chechng and Abstract Interpretatzon, LNCS 2575, Springer 2003.

[32] T. Xie, D. Notkin Mutually Enhancing Test Generation and Specification Inference. In Proceedings of 3rd
International Workshop on Formal Approaches to Testing of Software (FATES 2003), LNCS Vol. 2931, Springer,
pp. 60-69, Oct. 2003.

